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Abstract. A simple model for systems of dipolarly interacting single-domain ultrafine ferromagnetic par-
ticles is studied by Monte Carlo simulations of zero field cooling and field cooling as well as relaxation
experiments. By investigating systems characterized by an identical moderate concentration but different
types of particle positions’ disorder, it is shown that the positional disorder has a crucial influence on the
magnetic behavior of the system. For extreme values of positional disorder, the interplay between spatial
disorder and dipolar interaction can even lead to a cooperative freezing at low temperatures.

PACS. 75.50.Tt Fine-particle systems; nanocrystalline materials – 75.40.Mg Numerical simulation
studies – 75.50.Lk Spin glasses and other random magnets

1 Introduction

The interplay of randomness and dipolar interaction has
been intensively investigated in systems of single-domain
ultrafine ferromagnetic particles (see Ref. [1] for a recent
comprehensive review). Nevertheless, in difference to the
well understood dilute systems [2–6], the experimental re-
sults for dense systems and their interpretation are still
a matter of controversy [1,7–22]. In particular, there is
little agreement concerning the existence and the origins
of a spin glass phase at low temperatures. The signatures
of a spin glass phase (such as a peak in the non-linear
susceptibility at and aging phenomena below the tran-
sition temperature) have been reported for a variety of
systems, for example for dense samples of γ-Fe2O3 [14],
ε-Fe3N [20], and amorphous Fe1−xCx [21], but are absent
in others. Additionally, it is not clear whether the experi-
mentally observed spin glass behavior can be attributed to
the interplay between random anisotropy and dipolar in-
teraction, as conjectured in [13], or if the particles’ spatial
arrangement dominate the system’s behavior, as pointed
out in [22]. Intense theoretical investigations of diverse
model systems (see likewise Ref. [1] for a comprehensive
review) have not been able to resolve this controversy, as
no ingredient could be identified as the crucial one lead-
ing to spin glass behavior [23]. These contradicting results
get even more confusing, since it is known that disordered
dipoles can indeed show a cooperative freezing in systems
such as dipolar glasses [24]. So the crucial question has
remained, if and under which conditions the interplay of
randomly oriented anisotropies, spatially disordered parti-
cle positions, and dipolar interaction in systems of single-
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domain ultrafine ferromagnetic particles leads to a spin
glass phase at low temperatures.

When comparing dipolar glasses with systems of sing-
le-domain ultrafine ferromagnetic particles, one notices
that a major difference between the two classes of systems
is the type of positional disorder. And indeed, the influ-
ence of the positional disorder in systems of single-domain
ultrafine ferromagnetic particles has not been studied the-
oretically in much detail so far. To address the question
whether certain types of particle positions’ disorder might
be the crucial ingredient leading to spin glass behavior,
and to study the influence of positional disorder in gen-
eral, extensive MC simulations of the model investigated
in [23] using zero field cooling (ZFC) and field cooling
(FC) as well as relaxation experiments are performed. By
studying systems characterized by an identical moderate
concentration but different types of particle positions’ dis-
order, it is shown that the positional disorder has a large
influence on the system dynamics. Therefore, the detailed
characteristics of the spatial arrangement of the particle
positions are found to be important for understanding and
describing systems of single-domain ultrafine ferromag-
netic particles. For extreme values of positional disorder,
the system dynamics might even be interpreted as charac-
teristic of cooperative freezing. This presumable spin glass
behavior occurs, however, for parameter values which are
not realized in the experiments for which spin glass be-
havior have been reported.

2 Model

Analogously to the model studied in [23], it is assumed
here that every particle i consists of a single magnetic
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domain with all its atomic moments rotating coherently,
resulting in a constant absolute value |µi| = MSVi of
its total magnetic moment µi. Here, Vi denotes the vol-
ume of particle i, and MS is the saturation magnetization
which is supposed to be independent of particle volume
and temperature. The energy contribution of each parti-
cle i is composed of three parts: the anisotropy energy
E

(i)
A (either caused by the particle’s shape or crystalline

structure), the field energy E
(i)
H , and the energies E(i,j)

D
due to dipolar interaction with particles j 6= i. For sim-
plicity, a temperature independent uniaxial anisotropy is
considered,

E
(i)
A = −KVi

[
µi · ni
|µi|

]2

, (1)

where K denotes the anisotropy constant and the unit
vector ni denotes the orientation of the easy directions.
The coupling to the applied field H is described by

E
(i)
H = −µi ·H, (2)

and the energy due to magnetic dipolar interaction be-
tween particle i and particles j 6= i located at ri and rj
is given by

E
(i,j)
D =

µi · µj
r3
ij

− 3 (µi · rij) (µj · rij)
r5
ij

, (3)

where the inter-particle distance is rij = ri−rj and rij =
|rij |. Adding up the three terms given in equations (1–3)
and summing over all particles, the system’s total energy
is obtained,

E =
∑
i

E
(i)
A +

∑
i

E
(i)
H +

1
2

∑
i

∑
j 6=i

E
(i,j)
D , (4)

as used in the MC simulations [25]. The samples consid-
ered in the following consist of N = 125 particles with
identical volume Vi = V . The unitless concentration c is
defined as the ratio between the total volume

∑
i Vi = NV

occupied by the particles and the sample volume Vsample,
c =

∑
i Vi/Vsample = NV/Vsample. As this study focuses

on the influence of the particle positions’ disorder on the
magnetic properties, the results discussed in the follow-
ing are obtained for a constant moderate concentration
c/c0 = 0.13, where c0 = 2K/M2

S is a unitless material
constant [26].

To perform the main MC simulation, a set of disor-
dered particle positions {ri}C and a set of randomly cho-
sen orientations {ni}C of the easy axes are needed for
each configuration C. To obtain the sets of disordered
particle positions {ri}C in a well-defined and control-
lable way, a preceding positional MC simulation is per-
formed before the main magnetic MC simulation. During
this preceding positional MC simulation [25], the parti-
cles can move freely in a cubic box of linear size L? and
interact only by a standard Lennard-Jones pair potential
v?LJ(r?) = 4[(1/r?)12 − (1/r?)6] with periodic boundary
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Fig. 1. Plot of the pair correlation function g2(r?) vs. r? of
the particle arrangement obtained by the preceding MC simu-
lation, for T ? = 1 (circles), 104 (squares), and 1012 (diamonds).

conditions (quantities with ? indicate reduced variables of
the preceding MC simulation). For the reduced density
%? = N [L?]−3 = 0.85 is chosen, and the system is ther-
malized for the desired reduced temperature T ?. To rely
specifically on the Lennard-Jones system to produce the
particle positions is mainly motivated by the fact that it
is well studied, for a detailed discussion see for example
[27]. It is important to note that in the case under consid-
eration the reduced temperature T ? is not a real physical
temperature, but just provides a scalar parameter con-
trolling the particle positions’ disorder [28]. One way to
characterize the resulting positional disorder is by obtain-
ing the configurational averaged pair correlation function
g2(r?), defined as

g2(r?) =

〈
1

4π%?N [r?]2
∑
i,j 6=i

δ(r? − r?ij)
〉
C

. (5)

The pair correlation function g2(r?) is shown in Figure 1
for the three different values T ? used later on: T ? = 1 and
104, which approximately cover the disorder being present
in actual experiments (with T ? = 104 being already a bit
too large), and T ? = 1012, which is taken as an extreme
value (see discussion below). For T ? = 1, one obtains a
liquid-like arrangement very similar to the one used in [23],
with all particles well separated and no distances smaller
than r?min

∼= 0.95 present. For T ? = 104 and T ? = 1012,
the liquid-like pair correlations disappear, as g2(r?) = 1
means no pair correlation, and the minimum distance is
reduced to r?min

∼= 0.45 and r?min
∼= 0.08, respectively.

After the preceding MC simulation has provided the
set of disordered particle positions {ri}C for the current
configuration C, the respective orientations {ni}C of the
particles’ easy axes are chosen randomly, and both the
positions and the orientations remain constant during
the following main magnetic MC simulation. The long-
range dipolar interaction is treated with periodic bound-
ary conditions using Ewald’s summation for an infinite
sphere surrounded by vacuum [27,29] (for an alternative
MC approach based on effective field treatment see for
example [30] and references therein). During the main
MC simulation, the temperature T and the applied field
H are changed as discussed below, and the magnetiza-
tion M in the direction of the applied field is recorded in
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Fig. 2. Plot of the magnetization M/MS vs. temperature
kBT/(2KV ) obtained by ZFC/FC with a cooling/heating rate
of kB|∆T |/(2KV ) = 0.01225 every 8000 MC steps (open and
full circles) and every 32, 000 MC steps (open and full squares),
for (a) T ? = 1 and (b) T ? = 104. The arrows indicate the re-
spective blocking temperature TB, and the error bars are about
the size of the symbols. The temperatures kBT/(2KV ) =
0.09575 (full vertical line) and kBT/(2KV ) = 0.16925 (dashed
vertical line) are marked, cf. Figure 4.

certain time intervals (for further details concerning the
application of the Metropolis MC algorithm [25] to the
present model see [23,31]). The whole procedure of pre-
ceding MC simulation, randomly choosing the easy axes,
and main MC simulation is repeated for each configura-
tion C, and an ensemble average is performed by aver-
aging over more than 600 (when simulating ZFC/FC ex-
periments) and 160 (when simulating long-time relaxation
experiments) independent configurations.

3 Results

A first investigation of the systems characterized by the
three different types of particle positions’ disorder is done
by performing simulations of ZFC/FC experiments. Dur-
ing such an experiment, the system is first demagne-
tized at high temperatures and cooled in zero field, after-
wards a small field is applied, the system is heated until
reaching (super-)paramagnetic temperatures (yielding the
ZFC magnetization) and then cooled again (yielding the
FC magnetization). For the applied field H/HA = 0.1 is
used in the present case, where HA = 2K/MS denotes the
anisotropy field, and the system is cooled and heated with
two different constant rates of kB|∆T |/(2KV ) = 0.01225
every 8000 or 32, 000 MC steps, respectively. The obtained
magnetization M vs. temperature T is shown in Figures 2
and 3. First, one finds the rather unexpected result that
the blocking temperature TB depends crucially on the un-
derlying particle positions’ disorder, as the blocking tem-
perature TB for T ? = 104 is almost twice as high as for
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Fig. 3. Plot of the magnetization M/MS vs. temperature
kBT/(2KV ) obtained by ZFC/FC with a cooling/heating rate
of kB|∆T |/(2KV ) = 0.01225 every 8000 MC steps (open and
full circles, shown in (a)) and every 32, 000 MC steps (open
and full squares, shown in (b)) for T ? = 1012. The arrows
indicate the respective blocking temperature TB, and the er-
ror bars are about the size of the symbols. The temperatures
kBT/(2KV ) = 0.09575 (full vertical line) and kBT/(2KV ) =
0.19375 (dashed vertical line) are marked, cf. Figure 4.

T ? = 1, cf. Figure 2. The blocking temperature TB is de-
fined here as the temperature where the respective ZFC
and FC curves start to differ, and is indicated by arrows
in the figures (concerning the microscopic relevance and
other possible definitions of TB see below). When (log-
arithmically) changing the value of T ? from 1 to 104,
with this range approximately covering the disorder be-
ing present in actual experiments, the blocking tempera-
ture TB changes smoothly and interpolates between the
two values observed in Figure 2. The mechanism occur-
ring at TB is identical in both cases T ? = 1 and 104 (as
well as for the intermediate cases), as it can be seen when
taking into account the influence of the cooling/heating
rate. As it is apparent from Figure 2, the blocking temper-
ature decreases when reducing the cooling/heating rate,
and will approach zero at infinitely slow cooling/heating
rate. Hence, in these two cases the system is driven out of
equilibrium at a certain temperature that depends on the
cooling rate (or analogously reaches equilibrium at the
same temperature when heated), and a non-equilibrium
blocking of the magnetic moments occurs at TB.

This mechanism occurring at TB for T ? = 1 and 104 is
completely different from the one present in the extreme
case T ? = 1012 shown in Figure 3, where the opposite
influence of the cooling/heating rate is observed. Here,
the obtained blocking temperature TB increases unam-
biguously when reducing the cooling/heating rate, which
strongly indicates that there is not a non-equilibrium
blocking but a cooperative freezing of the magnetic mo-
ments occurring at TB. In difference to the cases T ? = 1
and 104, the values of the magnetization obtained for
T ? = 1012 applying the two different cooling/heating rates
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differ slightly for the temperature range kBTB/(2KV ) <
kBT/(2KV ) ≤ 0.5, meaning that the systems are not
(completely) in equilibrium for these temperatures above
the blocking temperature TB [32]. This observation leads
to the important point concerning the microscopic rele-
vance of the observed TB. In the cases T ? = 1 and 104

shown in Figure 2, the distribution of the effective en-
ergy barriers is expected to be rather narrow, so that
the macroscopically observed blocking temperature coin-
cides with the average microscopic blocking temperature.
In the extreme case T ? = 1012 shown in Figure 3, how-
ever, it is questionable whether this relation still holds,
as cooperative effects are expected to be important and
the distribution of the effective energy barriers will hence
be very broad. As a result, some particles’ magnetic mo-
ment may already be effectively frozen above the macro-
scopically observed blocking temperature TB on the time
scale given by the applied rate of temperature change,
explaining the observed slight dependence of the magne-
tization on the cooling/heating rate in the temperature
range above TB. Although other definitions of the macro-
scopic blocking temperature are possible and applied in
literature (for example defining the blocking temperature
as the temperature of the maximum of the ZFC curve),
they all share inevitablely the problem that the obtained
value cannot be directly related to the microscopic block-
ing temperatures being present in the system when the
distribution of the effective energy barriers is very broad.
Nevertheless, the blocking temperature TB, defined in one
way or another, is still a macroscopic observable provid-
ing insight into the energy scale relevant in the system and
is hence commonly used for good reasons to characterize
samples in simulations as well as in actual experiments.

To further assess the validity of these results, for each
of the three values of T ? four independent simulations
of constant temperature relaxation experiments in the
applied field H/HA = 0.1 are performed. The simula-
tions differ by the field applied during cooling the sys-
tem to the temperature kBT/(2KV ) = 0.09575 well be-
low the respective blocking temperatures TB (cf. Figs. 2
and 3) with a rate of kB|∆T |/(2KV ) = 0.01225 every
8000 MC steps: (i) cooling in zero field, (ii) cooling in the
applied field H/HA = 0.1, and (iii) cooling in the sat-
urated fields H/HA = 4 as well as (iv) H/HA = −4.
When the desired temperature is reached, the applied
field is changed to H/HA = 0.1 [cases (i), (iii), and
(iv)] or remains at H/HA = 0.1 [case (ii)], respectively,
and the relaxation starts. Shown in Figure 4 is the re-
sulting magnetization M vs. elapsed time t (in number
of MC steps). As the blocking temperatures TB of the
three investigated systems differ strongly, the conceptual
problem arises for which temperature one should com-
pare the relaxation behavior of the systems, as one can
either compare for (α) given constant T or (β) given con-
stant ratio T/TB. Therefore, in Figures 4b and c addi-
tionally shown are the results for the relaxation for the
two cases (iii) and (iv) of cooling in saturated fields to
the higher temperature kBT/(2KV ) = 0.16925 (Fig. 4b)
and kBT/(2KV ) = 0.19375 (Fig. 4c), which both have
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Fig. 4. Plot of the magnetization M/MS vs. time t (in number
of MC steps) for applied field H/HA = 0.1 and for (a) T ? = 1,
(b) T ? = 104, and (c) T ? = 1012. The open symbols correspond
in all three cases to the temperature kBT/(2KV ) = 0.09575,
whereas the closed symbols correspond to the temperature
(b) kBT/(2KV ) = 0.16925 and (c) kBT/(2KV ) = 0.19375.
The different symbols indicate (i) cooling in zero field (cir-
cles), (ii) cooling in the applied field H/HA = 0.1 (squares),
and cooling in the saturated fields (iii) H/HA = 4 (diamonds)
and (iv) H/HA = −4 (triangles). The dashed lines shown in
(b) and (c) indicate the fits M = M0 +M1t

−α log10 t, cf. text.
The error bars are about the size of the symbols.

the same ratio T/TB
∼= 0.69 as the value kBT/(2KV ) =

0.09575 used in Figure 4a. From Figures 4a and b one can
estimate that for T ? = 1 and 104 the involved relaxation
times are of the order of 105 and 107 MC steps at the fixed
temperature kBT/(2KV ) = 0.09575, and of the order of
105 and 106 MC steps at the fixed ratio T/TB

∼= 0.69. The
increase from T ? = 1 to 104 slows down significantly the
relaxation (both for fixed T and for fixed ratio T/TB), and
hence the positional disorder has a large influence on the
system dynamics, confirming the results obtained by the
ZFC/FC simulations. Nevertheless, an equilibrium value
of the magnetization exists in both cases and is reached
within experimental time scale, thus further supporting
the conclusion that one observes non-equilibrium block-
ing of the magnetic moments at TB.

In the extreme case T ? = 1012, however, one again
encounters a completely different behavior, cf. Figure 4c.
The observed values of the magnetization are distinct af-
ter 107 MC steps, and furthermore the data shows a pro-
nounced curvature. Thus, the relaxation becomes slower
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than log10 t before the values of the magnetization co-
incide, and the magnetization seems to level off at dis-
tinct values which depend on the sample history. As no
analytical form of the relaxation is known, the data for
t ≥ 4 × 104 MC steps is fitted using the ansatz M =
M0 +M1t

−α log10 t with the obtained exponents α rang-
ing from α = 0.1 to 0.4, shown as dashed lines in Fig-
ure 4c. The above conclusion of distinct long-time values
for the magnetization is supported by the fact that these
fits which take into account the curvature do not intersect
nor merge for t→∞, pointing towards the non-existence
of an equilibrium value of the magnetization. (It is im-
portant to note that analogous fits of the data shown in
Fig. 4b do intersect and merge.) Ignoring the existing cur-
vature and fitting the data shown in Figure 4c using the
worst case linear form M = M ′0 +M ′1 log10 t, one finds in-
tersections at approximately 1011 MC steps for both tem-
peratures shown, which is 6 orders of magnitude larger
than the relaxation times for T ? = 1 and far beyond what
is accessible numerically. Although based on the current
results one is not able to definitely exclude relaxation to-
wards and hence the existence of an equilibrium value of
the magnetization, this relaxation has to occur on a time
scale logarithmically larger than 1011 MC steps. Further-
more, the very large energy barriers needed for such long
relaxation times to occur can only be explained by cooper-
ative effects being present in the system. Thus, the system
with T ? = 1012 shows a cooperative freezing at TB by any
practical measure.

4 Conclusions

In summary, the particle positions’ disorder has been iden-
tified as a crucial parameter having a large influence on
the low temperature behavior of systems of dipolarly in-
teracting single-domain ultrafine ferromagnetic particles,
in accordance with recent experimental observations [22].
For values of positional disorder covering the range being
present in actual experiments, T ? = 1 and 104, a non-
equilibrium blocking of the magnetic moments occurs at
TB. Evidence has been given that for extreme values of
positional disorder, T ? = 1012, the simple model studied
can even show a cooperative freezing at low temperatures,
and it might be interesting to study quantities such as the
non-linear susceptibility to further support the current re-
sults and to definitely prove the existence of a spin glass
phase [33]. However, it is important to stress that this
presumable spin glass behavior occurs in any case for pa-
rameter values which are not realized in the experiments
for which spin glass behavior has been reported. The rea-
son is that for a given volume concentration c there is a
maximal value of T ?max which can be realized in actual
experiments, with T ?max increasing for decreasing volume
concentration c. For values of T ? larger than T ?max, the
particles’ minimal interdistance, which decreases with in-
creasing T ?, will get smaller than the particles’ diameter,
which of course cannot occur in actual experiments. As
the volume concentration in the model system can only be
given as multiple of the material constant c0, for example

c/c0 = 0.13 as in this study [26], the results for T ? = 1012,
besides being interesting from a theoretical point of view,
might nevertheless be relevant for hypothetical systems of
ultrafine ferromagnetic particles which have a small value
of c0, i.e. a small anisotropy constant K and/or a large
saturation magnetization MS. In any case, the important
conclusion is that, in spite of the large influence the po-
sitional disorder has on the magnetic properties of single-
domain ultrafine ferromagnetic particles, it cannot serve
to explain the experimentally observed spin-glass behav-
ior. So the question what causes the spin glass behavior
in the experiments reported so far remains open.
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